
Draft Draft

The fedora.us buildsystem
Enrico Scholz

Revision History
Revision 0.1 2003-11-28
Revision 0.2 2004-01-14

fixed/added some links

Table of Contents
Requirements on the build-system. 1

Attacks from upstream author. 1
Attacks from the packager. 2
Effects of attacks . 3
Summary . 4

Components. 5
mach . 5
vserver . 5
SELinux . 7
User Mode Linux (UML) . 7
QEMU/Bochs . 7
vserver-djinni . 7

The current buildsystem. 11
The physical host. 11
The buildmaster vserver. 11
The buildslave environment. 12
The buildroot(s) . 12

Problems . 12
Different rpm-database layouts and rpm-versions. 12
disttag-replacement. 12

Bibliography . 13

Abstract

This paper gives an overview about ways to implement a buildsystem for rpm-packages and about the cur-
rent fedora.us buildsystem. The official source of this document is http://www.tu-chemnitz.de/~ensc/fedora.us-
build where it can be found in a HTML[http://www.tu-chemnitz.de/~ensc/fedora.us-build/html]and PDF
[http://www.tu-chemnitz.de/~ensc/fedora.us-build/files/buildsystem.pdf]format.

Requirements on the build-system
There are two critical requirements on the build-system: it must build packages in a reliable manner, and it must
be resistant against attacks. Builds without much overhead and buildmaster intervention are other requirements.

Attacks from upstream author
There are various ways for the upstream author to attack the buildsystem. Basically, it is to differ between attacks
at package-buildtime, and these at the runtime of the package:

Runtime-attacks are the creation of backdoors in the programs (trojans), or to make them doing bad things at
certain times (timebombs). On first glance, the runtime case seems to be uninteresting for the buildsystem itself,
but as shown below this matters also.

Buildtime-attacks are possible since arbitrary code will be executed by the make-process. So:

1

url(http://www.tu-chemnitz.de/~ensc/fedora.us-build)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/html)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/files/buildsystem.pdf)

Draft The fedora.us
buildsystem

Draft

• local root exploits (e.g. backdoors introduced by other packages, overflows in suid’ed programs or daemons,
kernel flaws) can be used to gain privileges and to spy out secrets (e.g. ssh keys), or to modify files (e.g.
/etc/passwd or /lib/libc.so.6). Since chroot(2) is easy breakable1, files of the host system can
be compromised although the build happens in a chroot. Creating special devices (e.g./dev/hda) and
operating on them would by-pass chroots also; having access to/dev/kmem would allow to inject malignant
code into the kernel.

• processes which are running with the same uid can be ptrace’ed and killed. Such processes can be parallel
builds of other packages, or -- in combination with local root-exploits -- system-processes like init or sshd.

• a process could be spawned in the background and is killing or ptrace’ing processes of subsequent builds, or
is modifying files of such builds.

• network-resources of the build-machine could be used to open an hidden warez/porn server, or to run attacks
against remote machines.

There are known cases where buildtime-attacks are triggered by the hostname of the build-machine, so that the
build appears unsuspiciously on the machine of QA testers.

Altogether, since complex source-code will be compiled and complex code be executed by the make-system, it
would require a full audit to preclude upstream attacks, so this kind can not be detected by the QA.

Attacks from the packager

Special crafted .src.rpm files
An attacker could create special crafted (.src).rpm
files which are exploiting implementation or design
flaws of the rpm-program. So, arbitrary code could be
executed on the build-machine or on the machine of
QA people, when the package is extracted or queried.

Doing the requested rpm-action after running such
code would hide this kind attack effectively. QA will
not protect against this kind of attack.

Malicious patches/modified upstream sources
An attacker could introduce code which would have
the same effects like attacks from upstream authors.
Modified sources should be detected by QA when
there exist signed md5sums or signatures of upstream
sources. Most patches are small and should be au-
dited by QA also.

Malicious rpm-scriptlets or triggers
On installation of packages, these scriptlets are run-
ning as root and can do nearly everything. Malicious
shell-code in such scriptlets can and should be de-
tected by the QA, but since this shell-code executes
binaries of the current package and/or other packages,
it will be impossible to preclude attacks when pro-
grams of untrusted packages can be used in scriptlets.

SUID packaging
A packager could set the SUID bit of programs which
were never designed to run with root privileges and
untrusted input. Doing so, backdoors could be cre-
ated.

Such an attack can and must be detected by QA and/or
automatic QA tools like rpmlint.

1http://list.linux-vserver.org/archive/vserver/msg00729.html

2

url(http://list.linux-vserver.org/archive/vserver/msg00729.html)

Draft The fedora.us
buildsystem

Draft

Effects of attacks
There are two categories of attacks: those which are attacking the build-machine itself, and those which are
modifying the content of packages. In the chapter about bad upstream sources, most of the attacks against the
build-machine were mentioned already, and on a compromised build-machine it would be easy to do anything --
inclusive the modification of packages. Therefore, only the aspects of package-modifications will be discussed in
this section.

To do reliable builds, certain dependencies must be fulfilled which will lead to the installation of other, untrusted
packages. As mentioned inthe section called “Attacks from upstream author”, limiting the requirements to
packages of trusted packagers will not work since good src.rpms can create bad binary rpms.

At the installation of a package, rpm-scriptlets will be executed with root privileges, so that chroot’s can be broken
or files like libraries or programs be replaced. Since the replacement of files or the usage of chroot are common and
valid operations for rpm, it is impossible to forbid these operations. Therefore, when the first untrusted package is
installed, the build-root must be assumed as compromised.

Now, when a build happens in such an hostile environment, injected code can be executed (e.g. by calling a
replacedmake program or a program using a prepared/lib/libc.so.6). It will be possible, that the build-
results can be modified in such a manner that the created binary package carries the same malicious code as the
original code. So, entire dependency-trees can be infected. Yet worse, when using the same build-environment
for every package, the entire distribution will be infected.

As an example,Figure 1, “Infection of build-tree vs. infection of build-environment”shows the build of the
MagicPoint, kdebase, kdb, xine, ee and xemacs packages inclusive their dependencies (in this order). Malicious
code which replaces/lib/libc.so.6 will be assumed in arts. The first image shows what happens when for
each package an own build-system will be used, the second one shows the case when each build reuses the same
build-system. The blue node marks the origin of the infection, the red ones the infected packages. The black
arrows are symbolizing the BuildRequires:, the gray ones the build-order.

Figure 1. Infection of build-tree vs. infection of build-environment

MagicPoint arts

kdelibs

kdebase kdbg

xine-libs

xine

zliblibmng

libtiff

xemacsimlib

ee

Creating the build-system from scratch for each build

3

Draft The fedora.us
buildsystem

Draft

MagicPoint arts

kdelibs

kdebase kdbg

xine-libs

xine

zliblibmng

libtiff

xemacsimlib

ee

Reusing an already existing build-system

Summary
To prevent attacks and to have a reliable buildsystem, it must have the following properties:

Process-separation:
it MUST be impossible to kill or ptrace processes of
other buildroots or of the system. Hiding of foreign
processes SHOULD be provided.

Device/kernel protection:
Direct hardware access through/dev/* entries or
modification of kernel parameters through/proc
MUST be impossible. Forbidding the creation of such
special files is one way to reach it, access restriction
another one.

Unbreakable chroots:
it MUST be impossible for a process in a buildroot
to have any kind of access on objects of the systems
(e.g. ssh-keys), or write-access on other buildroots.

No buildroot-reusing:
each build MUST happen in an environment which
can not be influenced by previous builds in this envi-
ronment. This includes both filesystem-objects, and
processes.

Resource-restrictions:
excessive resource-usage (memory, diskspace,...) of
a build SHOULD be prevented. Usage of certain
resources (e.g. network) MUST be prohibited

4

Draft The fedora.us
buildsystem

Draft

Good performance:
the buildsystem SHOULD should have only a small
or non-existing impact on the performance.

Working environment:
building of common packages MUST succeed. This
requires certain/dev entries, and a mounted/proc
filesystem at least.

Mature userinterface:
the system SHOULD assist the buildmaster and au-
tomate the most tasks, so that the spent time will be
reduced to a minimum.

Components
The build-system consists of several layers: there is the part which builds the rpms and assists the buildmaster.
Currently, machis the only alternative for this task. Then, there is the part which ensures the security. This
one has several, mutually exclusive alternatives:vserver, SELinux, UML andQEMU. Because of the introduced
restrictions, most of these components will need special helper. For vserver, this isvserver-djinni. And last but
not least, there is needed something which glues the components together and provides a frontend to them.

The current fedora.us buildserver has a working mach & vserver & vserver-djinni setup.

mach
mach is a project founded by Thomas Vander Stichele, stands for “Make A CHroot” and can be found at
Sourceforge[http://sourceforge.net/projects/mach]. It prepares a minimal chroot-environment for package-builds,
installs needed buildrequirements and executes the build itself. There are other features also like easy configuration
of the build-tree (e.g. RHL9, FC1, fedora.us stable,...) or collecting of build-results (binary/source rpms,
buildlogs), so that mach became an essential part of the fedora.us buildsystem.

Problems:

• since usual chroots are not secure, additional layers are needed to provide the security aspects.
• mach does some operations like mounting the/proc filesystem into the chroot, which might collide with the
security setup.

• the current mach version (0.4.2) fails to resolve conditionalized BuildRequires: and such ones which are
pathnames (e.g. BuildRequires: /usr/include/db.h)

vserver
Vserver-Technology[http://www.linux-vserver.org]provides perfect process-separation, unbreakable chroots, is
very lightweighted and has nearly no performance impact. Large parts of its security is based on linux capabilities,
and the usage of network-resources can be restricted by setting the allowed interfaces/IPs and filtering it with
external tools like iptables or iproute.

Vservers are identified by contexts; a process can see processes of the same context only. The setup is very
easy and simple: each vserver appears as a standalone machine and is configured as a such one. There are existing
extensions which are allowing context-specific disk-quotas.Figure 2, “A typical vserver setup”illustrates a typical
vserver setup.

For the fedora.us buildsystem, the package-building happens in a separate vserver.

Problems:

5

url(http://sourceforge.net/projects/mach)
url(http://www.linux-vserver.org)

Draft The fedora.us
buildsystem

Draft

Figure 2. A typical vserver setup

Primergy

mail

www

cvs

VA LINUX

� �
� �
� �
� �

� �� �
� � �� � �

�
�
�
�
�
�

�
�
�
�
�
�

[root@cvs]# ps ax
PID TTY STAT TIME COMMAND

1 ? S 0:04 init
26930 ? S 0:00 /sbin/svlogd -t ./main/main ./main/auth ./main/debug
26935 ? S 0:00 /sbin/socklog unix /dev/log
26979 ? S 0:00 tcpserver-sshd ... 22 /usr/sbin/sshd -i
27024 ? S 0:05 crond
27050 ? S 0:00 tcpserver-cvs ... 2401 ... /usr/local/bin/cvswrap

682 pts/2 S 0:00 /bin/bash -login
728 pts/2 R 0:00 ps ax

[root@cvs]#

[root@www]# ps ax
1 ? S 0:04 init [3] --init

12865 ? S 0:00 /sbin/svlogd -t ./main/main ./main/auth ./main/debug
12866 ? S 0:00 /sbin/socklog unix /dev/log
12869 ? S 0:00 tcpserver-sshd -c 80 -q -l 0 ... 22 /usr/sbin/sshd -i
12876 ? S 0:00 /usr/sbin/crond
12877 ? S 0:00 /usr/sbin/httpd
13647 ? S 0:03 /usr/sbin/httpd
13651 ? S 0:03 /usr/sbin/httpd

705 pts/0 S 0:00 /bin/bash -login
708 pts/0 R 0:00 ps ax

[root@www]#

[root@mail]# ps ax
1 ? S 0:04 init [3] --init

19811 ? S 0:00 /sbin/svlogd -t ./main/main ./main/auth ./main/debug
19812 ? S 0:00 /sbin/socklog unix /dev/log
19815 ? S 0:00 tcpserver-sshd -c 80 -q -l 0 ... 22 /usr/sbin/sshd -i
19818 ? S 0:00 /usr/sbin/crond
27020 ? S 0:00 milter -O /var/lib/milter/default.py
27021 ? S 0:00 milter -O /var/lib/milter/default.py
27022 ? S 0:00 milter -O /var/lib/milter/default.py
28254 ? S 0:00 sendmail: accepting connections
28262 ? S 0:00 sendmail: Queue runner@01:00:00 for /var/spool/...

765 pts/0 S 0:00 /bin/bash -login
783 pts/0 R 0:00 ps ax

[root@mail]#

6

Draft The fedora.us
buildsystem

Draft

• vserver is an unofficial kernel-patch only and will not be in the kernel till 2.7/3.0. It conflicts with selinux
which is the preferred technology of Red Hat. There does not exist a patch for current RHL9/FC1/RHEL3
kernels yet; vanilla 2.4.x (without NPTL and exec-shield) is required. Therefore, vserver based buildsystem
can not be selfhosted by Fedora software.

• these changed environment can cause problems: db4 of RHL9/FC1 does not work on non-NPTL kernels, some
packages (e.g. MIT-scheme) require exec-stack and may work well on the build-machine, but fail on real FC1
installations. The marking of pre-FC1 binaries and disabling exec-shield on them will not work, since the
build-environment is FC1.

• because the build happens in a vserver with reduced capabilities, mach can not mount/proc into the buildroot
natively, but requires some kind of helper. Similarly for creating/dev entries.

• the safechroot(2) is a big, but working hack: contextes can not enter directories with000 permissions.

if ((mode & 0777) == 0
&& S_ISDIR(mode)
&& current->s_context != 0) return -EACCES;

SELinux
How SELinux will/can fulfill the requirements was not explored yet. Restricting of network-resources is supported
by SELinux

Open questions:

1.SELinux can protect foreign processes. But is it possible to hide them in/proc also?
2. Is chroot(2) implemented in a safe manner? Or, can parent directories of build-roots be protected with

SELinux policies? Is a safechroot(2) required at all?
3.What is the performance impact of the policy checking?
4.How can disk/memory usage restricted with SELinux? Would CKRM2 be an option?
5.Can special mount-operations (e.g./proc filesystem) be allowed by the policy, or does this require

userspace helper also?
6.Setup of an SELinux policy seems to be very complicated. How possible are holes in a setup?

User Mode Linux (UML)
UML is similarly to vserver but emulates an entire Linux system. It is more heavyweighted, has a more difficult
setup and has a performance impact, but offers interesting features like a copy-on-write filesystem which is missing
on vserver. It does not require a special host-kernel, so that its chances to come into RHEL/Fedora are much higher
than vserver’s one.

Since UML provides nearly a full featured Linux environment,/proc mounting or device creation would not
need userspace helpers.

QEMU/Bochs
QEMU [http://fabrice.bellard.free.fr/qemu/]and Bochs[http://bochs.sourceforge.net/]are emulating a complete
machine. They are very heavyweighted -- qemu slows down compilation in a factor of 2-43 -- are available for
common architectures (IA32) only. Therefore, they are not really an option.

vserver-djinni
vserver-djinni is used to do privileged tasks like directory mounting in unprivileged vservers. To do this, a
djinnid daemon is running in the privileged host-ctx and listens on commands from the vservers. One of djinni’s
designgoals was to enable a vserver-in-vserver functionality which is not doable with current vserver patch.

7

url(http://fabrice.bellard.free.fr/qemu/)
url(http://bochs.sourceforge.net/)

Draft The fedora.us
buildsystem

Draft

Figure 3. Djinni operation

context 0 context 42

/<buildroot>/proc
please mount

execl("/bin/mount", "/bin/mount", ..., "none", ".", NULL);

chroot(".");
chdir("/<buildroot>/proc");

fchdir(dirfd_root);
chroot(".");

dirfd_root = open("/", O_RDONLY);

dirfd_cur = open(".", O_RDONLY);

fchdir(dirfd_cur);

/var/lib/djinni/state/cmd

djinnid mach

chmod 000 barrier
/vservers/bmaster−hpc

exec−cd program

−−> cwd=="/vservers/bmaster−hpc"
fchdir(rootfd);

8

Draft The fedora.us
buildsystem

Draft

Beside the command-socket which is used to transmit commands from client to djinni-daemon, there is a second
watchdog socket. Before doing any other operation, a “djinni-rub” daemon must connect to this watchdog socket
and must keep it open till the last operation. One this sockets gets closed (e.g. by killing the “djinni-rub” daemon)
there is no way to re-enable the command socket from within the vserver.

Each djinni process is assigned to exactly one vserver and there are two kinds of commands for djinnid: these
ones which are executing a single command and those, which are creating a new djinnid process for a vserver.
When executing a single command, this command starts with having the vserver directory as its current working
directory. With careful choosing of the following commands, symlink attacks from within the vserver can be
prevented effectively.

The other kind of command creates the new sockets within a vserver environment and starts a new djinni process
listening on them (command- and watchdog-socket). Upon startup of this new daemon, the top-directory of
the new vserver will be entered in a secure way and its filedescriptor internally stored and used on subsequent
operations.

One djinnid serves exactly one master which is identified through its uid/gid attributes and its context. The context
is determined by the pid of the master-process which is transmitted through SCM_CREDENTIALS messages on
the command-socket. Once such a message was transmitted to a newly created djinnid, all subsequent messages
must have this origin (uid + ctx). To prevent certain kinds of attacks4 an additional confirmation step is needed in
the communication.

vserver-djinni is configured through a an hierarchical filesystem structure in/etc/djinni.d . Each file there
which does not begin with a period means a command which can be sent to djinnid. Files beginning with a dot are
marking special attributes of the vservers; such attributes are:

.run
The command which will be executed; this file must be executable.

.params
A syntaxdescription of allowed parameters; e.g. “p” for a path, “v” for a vservername, “[...]”
for a set of possible values and so on.

.new
When this file exists, the command will be used to create a new vserver. The content of this
directory configures the command-set of the new djinnid.

.trusted
When this file exists for currentand all parent-configurations, the vserver will be assumed as
trusted. Starting an untrusted vserver within an untrusted vserver is not supported.

Example 1. Sample djinni.d configuration

2http://ckrm.sourceforge.net/
3http://fabrice.bellard.free.fr/qemu/benchmarks.html
4Attacker from other ctx gives command and terminates the process immediately. Now he enforces process creation in the authorized context

(e.g. ssh-login as ordinary user) and speculates on a race between “send wish” and “verify source”.

9

url(http://ckrm.sourceforge.net/)
url(http://fabrice.bellard.free.fr/qemu/benchmarks.html)

Draft The fedora.us
buildsystem

Draft

Figure 4. Djinni filedescriptors and communication

fchdir(old_rootfd); chroot("."); rootfd=open("/vservers/bslave−0",O_RDONLY)

rootfd=open("/",O_RDONLY);

fchdir(old_rootfd); chroot("."); rootfd=open("/vservers/bmaster−hpc",O_RDONLY);

/vservers/bmaster−hpc/var/lib/djinni/lib/{cmd,lamp}

/vservers/bmaster−hpc/vservers/bslave−0/var/lib/djinni/lib/{cmd,lamp}

/vservers/bmaster−hpc/vservers/bslave−1/var/lib/djinni/lib/{cmd,lamp}

/var/lib/djinni/lib/{cmd,lamp}

/vservers/bmaster−legacy/vservers/bslave−0/var/lib/djinni/lib/{cmd,lamp}

/vservers/bmaster−legacy/var/lib/djinni/lib/{cmd,lamp}

djinnid

djinnid

djinnid

djinnid

djinnid

djinnid

verify
source

connect to
"cmd" socket

send
wish

ask for
confirmation

confirm

execute
wish

client djinnid

SCM_CREDENTIALS
−> pid −> ctx

random string from
/dev/urandom

return same
string

10

Draft The fedora.us
buildsystem

Draft

/etc/djinni.d
|-- .trusted
‘-- new_bmaster

|-- .new
|-- .params
|-- .trusted
|-- new_bslave
| |-- .new
| |-- .params
| |-- .run
| |-- prepare_machroot
| | |-- .params
| | ‘-- .run
| ‘-- shutdown_machroot
| |-- .params
| ‘-- .run
‘-- stop_bslave

|-- .params
‘-- .run

The current buildsystem
The current (and working) fedora.us buildsystem consists of the following parts:

• avservercapable kernel,
• mach,
• vserver-djinni, and
• fedora.us-build which glues this parts together

Figure 5. Buildsystem structure

vservers bmaster mnt/slaves bslave−0 root var/lib mach

mnt/bslave

/
bslave−1 root var/lib mach

mnt/workspace

mount −−bind /mnt/bslave "."

bslave−0

Host Master

Slave

Buildroot

root/redhat−9−i386 ...

chmod 000 barrier

read−only

 mount −−bind /mnt/workspace/bslave−0 "."

The physical host
The physical host is a box running a vserver-capable kernel. System is a usual Red Hat Linux distribution plus
some extra-packages (vserver related). It does not need much disk-space; 500 MB should be enough for minimal
installations. On this host the ’djinnid’ daemon must be running with the commandset defined by the fedora.us-
build package[http://www.tu-chemnitz.de/~ensc/fedora.us-build/files].

The buildmaster vserver

11

url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/files)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/files)

Draft The fedora.us
buildsystem

Draft

This is a vserver, where the buildmaster person(s) are starting the builds and are sending the built packages to a
separate signing server. Requirements on this vserver are minimal also.

The build will be initiated bystart-build <dist> <package-url> <md5sum> <gpg-key#>which is starting a
buildslave in a separate context within an unbreakable chroot. This operations will require privileges to mount
tmpfs filesystems or to create device inodes. The “new_bslave” command of djinni will be used for this task. In
detail, this action

• mounts the readonly buildslave with “--bind”
• creates/dev in the slave as a tmpfs and populates it; dev-inodes on a readonly volume are not working, e.g.
“echo >/dev/null” would fail there.

• creates/var in the slave as a tmpfs
• mounts a slave-specific, writable buildroot with “--bind” at/var/lib/mach

There exists a “stop_bslave” command with revokes this actions but does not do any removals/cleanups.

The buildslave environment
This environemt is created as a usual vserver and can be used in this way. But for build-server tasks it is just
an ordinary chroot environment (no init step) which uses the unbreakable chroot feature of vserver kernels. This
environmentMUSTbe mounted readonly or write-protected in other ways.

The current buildsystem solves this by having a readonly mounted loopdevice at/mnt/bslave in the host.
Now, each “new_bslave” djinni command will executemount --bind /mnt/bslave "." in the root-directory of the
buildslave.

The requirements of the buildslave are small; 200 MB should be enough. A buildslave does not build more than
one package; at its startup all old data will be wiped and the new buildroot be initialized. The package-build itself
is done with a slightly modified mach.

Since buildroot creation requires privileges to mount a/proc filesystem and to create special inodes, djinni will
be called by mach with the “prepare_machroot” and “shutdown_machroot” commands.

The buildroot(s)
Each buildslave needs a separate buildroot where the real build happens. This buildroot is a directory in a
workspace partition and is mounted with “--bind” at/var/lib/mach . The workspace partition contains
temporary data only and should have a very fast filesystem; ext2 would be ideally for it. It needs much space;
2GB are required e.g. for a glibc build. Since each slave will need this, slave-count * 2GiB should be reserved for
this area.

The buildroot-area contains mach files (cache, apt-configuration, ...) and will be wiped for each build. It can be
initialized with prebuild filesystem images to speedup the build.

Problems
Different rpm-database layouts and rpm-versions
When using chroot-based builds the bootstrapping of the initial chroot-environment happens from the host. When
using the host rpm-version, a later rpmbuild within the chroot may fail since the database format can not be
understood by it. E.g. the rpm from Fedora Core 1 will create/var/.../root/var/lib/rpm/Packages
in db4.1 format. Now, rpmbuild from RHL7.3 understands db3 format only and will fail therefore.

Another effect when bootstrapping with newer/other rpm versions might be a changed behavior of rpm. E.g.
rpm-4.2.1 introduced strict epoch handling and will fail on lots of RHL9 or previous packages.

Status: solved by using different rpm binaries

12

Draft The fedora.us
buildsystem

Draft

disttag-replacement
fedora.us requires a disttag for clean update-paths. Since there does not exist any policy for packagers how this
should happen, it is very difficultly to change the disttag at mass-builds. mach’s methods are crude heuristics and
are failing at some packages.

Status: most packages are working with the replace-old-suffix-with-new-one method, but a formal policy (forbid
disttags entirely, or enforce usage of overridable %{?disttag}) would be highly appreciated.

Bibliography
[Vserver] chroot(safe) issues. http://list.linux-vserver.org/archive/vserver/msg05232.html.

vserver. Vserver project homepage and kernelpatches.http://www.linux-vserver.org.

util-vserver. Vserver userspace tools.http://www.nongnu.org/util-vserver.

vserver-djinni. http://www.tu-chemnitz.de/~ensc/fedora.us-build/files.

mach. http://mach.sf.net.

fedora.us-build. http://www.tu-chemnitz.de/~ensc/fedora.us-build/files.

CKRM. Class based linux Kernel Resource Management.http://ckrm.sourceforge.net.

QEMU. http://fabrice.bellard.free.fr/qemu.

Bochs. http://bochs.sourceforge.net.

13

url(http://list.linux-vserver.org/archive/vserver/msg05232.html)
url(http://www.linux-vserver.org)
url(http://www.nongnu.org/util-vserver)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/files)
url(http://mach.sf.net)
url(http://www.tu-chemnitz.de/~ensc/fedora.us-build/files)
url(http://ckrm.sourceforge.net)
url(http://fabrice.bellard.free.fr/qemu)
url(http://bochs.sourceforge.net)

